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Abstract Accurate treatment of electron correlation in quantum chemistry requires
solving the many-electron problem. If the nodal surface of a many-electron wave func-
tion is available even in an approximate form, the fixed-node diffusion Monte Carlo
(FNDMC) approach from the family of quantum Monte Carlo methods can be success-
fully used for this purpose. The issue of description and classification of nodal surfaces
of fermionic wave functions becomes central for understanding the basic properties
of many-electron wave functions and for the control of accuracy and computational
efficiency of FNDMC computations. In this work, we approach the problem of auto-
matic classification of nodal pockets of many-electron wave functions. We formulate
this problem as that of binary classification and apply a number of techniques from
the machine learning literature. We apply these techniques on a range of atoms of light
elements and demonstrate varying degrees of success. We observe that classifiers with
relatively simple geometry perform poorly on the classification task; methods based
on a random collection of tree-based classifiers appear to perform best. We conclude
with thoughts on computational challenges and complexity associated with applying
these techniques to heavier atoms.
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1 Introduction

Two classes of methods account for the large majority of quantum chemical electronic
structure calculations. Density functional theory (DFT) computes the molecular energy
using a functional of the electron density [1,2]. Although DFT calculations are com-
putationally inexpensive and often accurate, the true energy functional is not known,
leaving DFT practitioners little recourse for systematically improving unsatisfactory
results. Wave function-based theories (WFT), e.g. Hartree-Fock-Roothaan approach,
[3] select a well defined, but approximate form of the electronic wave function and
optimize the free parameters of that form. WFTs that account for electron correlation
are typically significantly more expensive than DFT, but may converge to the exact
wave function in certain limits. However, the accuracy of any practical application of
WFT is limited by the constrained wave function form.

Quantum Monte Carlo (QMC) methods represent an important class of electronic
structure simulation techniques used in quantum chemistry. QMC is rooted in sto-
chastic approaches to solution of the electronic Schroedinger equation [4]. Compared
to other techniques, QMC relies on the minimal number of approximations and can
be used with wave functions ansätze of high complexity, which makes QMC highly
accurate and flexible [5]. QMC calculations have great value for providing consistently
reliable quantum chemical results and benchmarking and calibrating DFT, WFT and
other methods. Diffusion Monte Carlo (DMC) uses stochastic projection in order to
deliver eigenvalues of the molecular Hamiltonian by propagating the Schrödinger
equation in imaginary time, τ = i t

d

dτ
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where is X a position vector of an n-electron configuration and � (X, τ) is a wave
function. This is accomplished by exploiting two isomorphisms. One is between the
kinetic energy term in the Hamiltonian and a classical diffusion equation, the other
is between the potential energy and a spatially inhomogeneous first-order rate equa-
tion. Diffusion can be simulated by a random walk and rate equation by a branching
process. Treatment of fermionic systems requires a fixed-node constraint for DMC
(FNDMC) to account for antisymmetry of the wave function and to avoid a collapse
into the bosonic ground state [5]. In FNDMC, the domain of a many-electron wave
function is separated into smaller “pockets” by the nodes of an approximate wave
function so that DMC random walks are restricted to separate nodal pockets. The
small energetic errors due to the FN approximation give FNDMC a level of accuracy
commensurate with “gold-standard” methods of WFT [6]. The FN constraint consti-
tutes the only uncontrolled approximation in FNDMC; any advances in characterizing
and ultimately improving nodal pockets will have enormous theoretical impact on the
field of electronic structure simulation. Understanding the geometry of these nodes
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is a complex task, exacerbated by the fact that the dimensionality of the space under
consideration grows proportionally with the number of electrons present in the system.
An open challenge in the field is to develop effective analysis and visualization tools
for better understanding the structure of these nodes.

The main result in the theory of nodal surfaces of many-electron wave functions is
a so-called “tiling theorem” [7]. It states that nodal pockets of the Fermi ground state
are the same within permutational symmetry. There is no such theorem for the excited
states, which tremendously complicates treatment of such states. Visual inspection of
Pfaffian wave functions of the simplest systems showed that there are tunnels between
nodal pockets that are not present in the determinant wave functions [8]. Currently,
plotting and visual inspection is the most typical approach to studies of nodal fea-
tures [9,10]. Only limited understanding of the basic geometric properties of nodes of
many-electron wave functions has been achieved to date, largely due to the complexity
that arises with hypersurfaces in spaces of very high dimensionality. Development of
a classification approach that creates a “representation” of a nodal structure can stim-
ulate studies of nodal geometry and optimal properties of nodes. It will help to gain
insights into the behavior of nodes of electronically excited states, which is currently
not well understood.

The problem of classification of nodal structure of many-electron wave functions
can be reformulated as the prediction of the sign of such a wave function for a given
configuration of electrons. We seek to define a partitioning of the configuration space
so that nodal pockets (i.e. regions of different signs) can be separated from each other.
A potential approach towards solving this problem is to use data-driven mathematical
constructs such as hyperplanes, trees, ensembles of trees, etc. A significant amount of
classification machinery has been developed in the machine learning community over
the past few decades, and the goal of this paper is to ascertain if we can leverage these
techniques for the nodal pocket classification problem.

In this paper, we introduce a statistical approach to identification of nodal pockets.
We present results from an investigation into the problem of automatically detecting
nodal pockets of many-electron wave functions in electronic structure theory. We pose
the task as that of binary classification (i.e., predicting the sign of the wave function)
for high dimensional many-electron configurations resulting from QMC simulations.
We then apply a number of modern classification techniques from the statistical liter-
ature and report on the observed performance, limitations and implications for future
work.

2 Methods

Datasets for the study were generated using variational Monte Carlo (VMC) as imple-
mented in Zori QMC software [11]. First row atoms from Li to Ne were considered.
Trial wave functions in the product form were constructed from HF/STO-3G determi-
nants and simple Jastrow correlation functions [12]. Simulations were performed with
ensembles of 100 random walkers (or Markov chains) each propagated for 10,000
time-steps. Each electron is assigned a spatial x, y, z position, hence we have a 3n
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dimensional vector representing an n-electron configuration. In our case, we had data
ranging from Li (3 electrons, 9 dimensions) to Ne (10 electrons, 30 dimensions).

We used R [13] for performing all analysis and classification tasks reported in this
paper. We used the classification and regression training (caret) package [14] which
provides a convenient wrapper for tuning, training and testing various classification
techniques. We used the following classification techniques: Support Vector Machine
(SVM) (with linear and polynomial kernels), [15] Classification Trees, [16,17]
K-nearest neighbor, [18] and Random Forest [19,20]. All of the tests were performed
on a high-end Sun Microsystems Sunfire x4640 SMP machine, which consists of a
single node with eight 6-core Opteron 2.6 GHz processors sharing 512 GB of memory.
We note that in spite of the computational horsepower available, we were constrained
to using single threaded implementations for individual classification techniques.

We split each dataset randomly into five sections with 200 K entries each. The first
section was used exclusively for tuning purposes. The other four sections were used
in a 4-fold cross validation fashion for determining final classification error for each
technique. We now report on the results of our experiments.

3 Results and discussion

As indicated earlier, we used caret for tuning various classification techniques on an
exclusive tuning dataset. We considered the following variables for the tuning process
with respective designations in parenthesis: value of K (K) for K-nearest neighbor,
tree max depth (Maxdepth) for classification trees, regularization constant indicating
cost of constraint violation (Cost) for SVM with linear kernel, regularization constant
indicating cost of constraint violation (Cost) for SVM with polynomial kernel, degree
of polynomial (Degree) for SVM with polynomial kernel, and number of predictors
sampled for splitting at each node (mtry) for Random Forest.

We could have optimized the Random Forest procedure for number of trees and
depth of each tree. Due to runtime considerations (elaborated later in the paper), we
empirically determined 500 trees and the default maxdepth value 30 to be reasonable.
We plan on exploring this issue further in future work. Table 1 shows optimal settings
learned from the tuning procedure for each method.

Our goal in tuning the five techniques for the first four elements (Li, Be, B, C) was
to gain a sense for which techniques would perform best. For the remaining elements

Table 1 Optimal settings of tuning variables determined for each dataset by the tuning procedure

Technique, variable Li Be B C N O F Ne

SVM-linear, cost 0.25 1 0.25 2 − − − −
SVM-polynomial, cost 0.25 0.75 0.25 0.25 − − − −
SVM-polynomial, degree 2 4 4 3 − − − −
Classification tree, maxdepth 7 12 12 9 − − − −
K-nn, K 9 9 9 9 − − − −
Random Forest, mtry 3 3 7 8 6 9 7 7
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Fig. 1 Error rates for Li/Be/B/C across several classification techniques

(N, O, F, Ne) we chose to tune only the Random Forest technique because we felt it
was the most promising for classifying performance.

After determining optimal parameters in the tuning phase, we did 4-fold cross-
validation to test classification performance on the remaining sections of the dataset.
We first report classification performance for Li, Be, B and C in Fig. 1. We make the
following observations:

(a) Random Forest and K-nn appear to give the best classification performance
among the methods that we considered. We get prediction error rates of 0.00 %
(Li), 0.11 % (Be), 1.01 % (B), 4.17 % (C) using K-nn and 0.01 % (Li), 0.05 %
(Be), 0.19 % (B), 0.84% (C) using Random Forest. This result is consistent
with the general machine learning community literature in that Random Forests
provide state-of-the-art performance for classification tasks.

(b) The classification task appears to get harder as we increase the number of elec-
trons in the atom. This is to be expected since as we add electrons with each
element, the dimensionality of the input space increases proportionally and the
shape of the nodal pockets becomes more complex. An open question at this point
is whether the Random Forest technique will work well for elements beyond C.
We investigated this question further by testing the approach on elements N, O,
F and Ne.

Figure 2 shows the time taken to run the Random Forest procedure on all data-
sets. This figure shows that the procedure is fairly computationally intensive; the task
can take ∼12 h to complete a training/testing iteration on these datasets. This makes
it challenging to tune the implementation for various parameters. Nevertheless, we
performed rudimentary optimizations to the implementation for each of the elements
reported in the paper.
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Fig. 2 Runtime performance of Random Forest method measured as time to train the Random Forest with
500 tuned trees

Fig. 3 Classification performance of Random Forest measured as percent of error of a Random Forest with
500 trees

Perhaps more interestingly, Fig. 3 shows that the performance of the Random For-
est technique drops rather sharply as we examine elements with larger number of
electrons. We observe an error rate of 6 % (N), 25 % (O), 25 % (F) and 24 % (Ne).
This trend seems to imply that our current Random Forest implementation will have
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limited success in classifying heavier atoms, and that we should either tune the imple-
mentation more carefully, or consider more comprehensive ensemble classification
techniques such as Super Learner [21].

We have reported classification results for the first row of the periodic table (Li,
Be, B, C, N, O, F, Ne). As the number of electrons in the atom increases across the
row, the dimensionality of the configuration space increases and the spatial pattern
of nodal pockets becomes more complicated. Most classification techniques used in
our paper (SVMs with linear and polynomial kernels and classification trees) have
relatively simple geometric interpretation but do not fare well.

While K-nn appears to be moderately competitive, we cannot use the technique
from a science-application point of view since we do not end up with a geometric
description of the nodal pockets at the end of the day. We will also need to keep the
training data around in order to make predictions. This is infeasible for our use case.

The Random Forest method appears to do well initially, but its performance seems
to degrade significantly for the latter elements considered in the study. We postulate a
few reasons for this performance. We may need more data (i.e. more walkers) to pop-
ulate a larger configuration space. We might need to do more extensive tuning for the
heavier elements. The shape of nodal pockets is simply too complex to be represented
well by a Random Forest. While it is easy to generate a larger amount of data with our
simulation code, with the current implementation of Random Forest, it is unclear if
we can run the procedure in a reasonable amount of time. In retrospect, it would have
been convenient to have access to a parallel implementation of the Random Forest
package. While we can manually carry out cross-validation and tuning in parallel, we
are still limited by the time to train the Random Forest procedure on a single dataset.
It produced good classification for the elements Li, Be, B and C. The performance for
N, O, F and Ne was not as stellar; we would like to tune the method on larger datasets.
It is possible that other techniques such as gradient boosting [22] might provide a
further improvement in performance; we will investigate this in the future. We would
like to integrate our prediction framework into the Zori code and use the predicted
sign value to provide an alternative method for enforcing the FN constraint. This step
is perceived as a route to direct optimization of nodal surfaces that is not limited by
the flexibility of a particular trial wave function. We would also like to assess to what
degree the presence of misclassified points is detrimental considering the stability of
QMC simulations that rely on the FN approximation. An important but challenging
problem for future work is to develop an approach for comparative analysis of the
learned Random Forests and to gain insights into the corresponding nodal surfaces.
This task is key to rationalization of changes in nodal structure upon transitions among
different electronic states of the same molecular system.

4 Conclusions

In this paper, we have approached an open problem in QMC: can we automatically
classify nodal pockets in the electronic structure of molecules. We have applied a
number of modern classification techniques from the statistical literature with varying
degrees of success. We found that Random Forest outperforms other methods across
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the board for early elements in the periodic table. However, as we applied Random
Forest to elements with larger numbers of electrons, we were unable to achieve good
performance. We postulate that this might be due to lack of sufficiently representative
data, or simply a reflection of the complexity of nodal pocket geometry. We believe that
further development of powerful ensemble-based classification procedures, and access
to computationally efficient, parallel algorithmic implementations will be important
for tackling this problem in the future.
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